skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peretti, Jacques"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Scanning tunneling electroluminescence (STL) microscopy is performed on a 3 nm‐thick InGaN/GaN quantum well (QW) with [In] = 0.23 such that the main light emission occurs in the green. The technique is used to map the radiative recombination properties at a scale of a few nanometers and correlate the local electroluminescence map with the surface topography simultaneously imaged by scanning tunneling microscopy. While the expected green emission is observed all over the sample, measurements performed on a 500 nm × 500 nm area around a 150 nm‐large and 2.5 nm‐deep hexagonal defect reveal intense emission peaks at higher energies close to the defect edges, features which are not visible in the macrophotoluminescence spectrum of the sample. Via a fitting of the local tunneling electroluminescence spectra, quantitative information on the fluctuations of the intensity, peak energy, width, and phonon replica intensity of the different spectral contributions is obtained, which provides information on carrier localization in the QW. This procedure also indicates that the carrier diffusion length on the probed area of the QW is shorter than 50 nm. 
    more » « less